MINIMALLY MODIFYING A MARKOV GAME TO ACHIEVE ANY NASH EQUILIBRIUM AND VALUE Young Wu, Jeremy McMahan, Yiding Chen, Yudong Chen, Xiaojin Zhu, Qiaomin Xie, with Joy Cheng University of Wisconsin - Madison

Markov Game

- A finite-horizon two-player zero-sum Markov game $G^{\circ} = (R^{\circ}, P^{\circ})$ has:
- 1. S is the finite state space,
- **2.** \mathcal{A}_i the finite set of actions for player $i \in \{1, 2\}$,
- 3. P° is the transition probability matrices,
- 4. R° is the payoff matrices,
- 5. *H* is the horizon,

The Game Modification Problem

- Game modification is the following optimization problem to find R given $(R^{\circ}, P^{\circ}, b, (\mathbf{p}, \mathbf{q}), [\underline{v}, \overline{v}], \ell)$:
 - $\inf_{R} \ \ell(R,R^{\circ})$
 - s.t. (\mathbf{p}, \mathbf{q}) is the unique MPE of (R, P°)
 - value $(R, P^{\circ}) \in [\underline{v}, \overline{v}], R$ has entries in [-b, b].
- It is important to require that the modified game (R, P°) has a **unique** Markov Perfect (Nash) Equilibrium (MPE).
- The Game Modification problem (1) for Markov games is feasible if and only if $|\mathcal{I}_{h}(s)| = |\mathcal{J}_{h}(s)|$ for every $h \in [H], s \in \mathcal{S}$, and $(-Hb, Hb) \cap [\underline{v}, \overline{v}] \neq \emptyset$.
 - Here, $\mathcal{I} = supp(\mathbf{p})$ and $\mathcal{J} = supp(\mathbf{q})$ denote the supports (the set of actions used with non-zero probabilities) of the MPE.

Equivalent Formulation

• We consider the following optimization problem:

$$\begin{split} \min_{R,v,\mathbb{Q}} \ell\left(R,R^{\circ}\right) \\ \text{s.t.} \left[\mathbb{Q}_{h}\left(s\right)\right]_{\mathcal{I}_{h}\left(s\right)\bullet} \mathbf{q}_{h}\left(s\right) = v_{h}\left(s\right)\mathbf{1}_{|\mathcal{I}_{h}\left(s\right)|} \\ & \forall h \in [H], s \in \mathcal{S} \qquad \text{[row SII]} \\ \mathbf{p}_{h}^{\top}\left(s\right)\left[\mathbb{Q}_{h}\left(s\right)\right]_{\bullet \mathcal{J}_{h}\left(s\right)} = v_{h}\left(s\right)\mathbf{1}_{|\mathcal{J}_{h}\left(s\right)|}^{\top} \\ & \forall h \in [H], s \in \mathcal{S} \qquad \text{[column SII]} \\ \left[\mathbb{Q}_{h}\left(s\right)\right]_{\mathcal{A}_{1}\setminus\mathcal{I}_{h}\left(s\right)\bullet} \mathbf{q}_{h}\left(s\right) \leq \left(v_{h}\left(s\right)-\iota\right)\mathbf{1}_{|\mathcal{A}_{1}\setminus\mathcal{I}_{h}\left(s\right)|} \\ & \forall h \in [H], s \in \mathcal{S} \qquad \text{[row SOW]} \\ \mathbf{p}_{h}^{\top}\left(s\right)\left[\mathbb{Q}_{h}\left(s\right)\right]_{\bullet \mathcal{A}_{2}\setminus\mathcal{J}_{h}\left(s\right)} \geq \left(v_{h}\left(s\right)+\iota\right)\mathbf{1}_{|\mathcal{A}_{2}\setminus\mathcal{J}_{h}\left(s\right)} \\ & \forall h \in [H], s \in \mathcal{S} \qquad \text{[column SOW]} \\ \mathbf{Q}_{h}\left(s\right) = R_{h}\left(s\right) + \sum_{s' \in \mathcal{S}} P_{h}\left(s'|s\right)v_{h+1}\left(s'\right) \\ & \forall h \in [H-1], s \in \mathcal{S} \qquad \text{[Bellman]} \\ \mathbf{Q}_{H}\left(s\right) = R_{H}\left(s\right), \forall s \in \mathcal{S} \\ & \underline{v} \leq \sum_{s \in \mathcal{S}} P_{0}\left(s\right)v_{1}\left(s\right) \leq \overline{v} \qquad \text{[value range]} \\ & - b + \lambda \leq [R_{h}\left(s\right)]_{ij} \leq b - \lambda \\ & \forall \left(i, j\right) \in \mathcal{A}, h \in [H], s \in \mathcal{S} \qquad \text{[reward bound]} \end{split}$$

- $[R]_{\mathcal{I},\mathcal{I}}$ or $R_{\mathcal{I},\mathcal{I}}$ denotes the $|\mathcal{I}| \times |\mathcal{J}|$ submatrix of R with rows in \mathcal{I} and columns in \mathcal{J} . We write $R_{\mathcal{I}}$ for the $|\mathcal{I}| \times |\mathcal{A}_2|$ submatrix with rows in \mathcal{I} , and $R_{\bullet,\mathcal{J}}$ for the $|\mathcal{A}_1| \times |\mathcal{J}|$ submatrix with columns in \mathcal{J} ; and $\mathbf{1}_{|\mathcal{I}|}$ denotes the $|\mathcal{I}|$ -dimensional all-one vector.

Re	lax	And	Per	turb	Alc	orit	hm
					- Č		

- Input: original game (R°, P) , cost function ℓ , target policy (\mathbf{p}, \mathbf{q}) and value range $[\underline{v}, \overline{v}]$, reward bound $b \in \mathbb{R}^+ \cup \{\infty\}$.
- **Parameters**: margins $\iota \in \mathbb{R}^+$ and $\lambda \in \mathbb{R}^+$.
- **Output**: modified game (R, P).
- 1. Solve the problem (2). Call the solution R'.
- **2.** For $h \in [H]$, $s \in S$ Sample $\varepsilon \sim uniform[-\lambda, \lambda]$
- 3. Perturb the reward matrix in stage (h, s): $R_h(s) = R'_h(s) + \varepsilon R^{\mathsf{eRPS}}(\mathbf{p}_h(s), \mathbf{q}_h(s))$, where R^{eRPS} is the reward matrix for the extended Rock-Paper-Scissor game, which has $((\mathbf{p}_{h}(s), \mathbf{q}_{h}(s)))$ as its unique NE.
- 4. Return (R, P).

(2)

(1)

Existence, Feasibility, and Optimality

Let $R(\iota, \lambda) = R' + \varepsilon R^{eRPS}$ denote the output of the RAP Algorithm with margin parameters $\iota,\lambda.$ If

 $(-b + \lambda + \iota, b - \lambda - \iota) \cap \left[-\underline{v}/H, \overline{v}/H\right] \neq \emptyset,$

then the following hold.

- 1. (**Existence**) The solution R' to the program (2) exists.
- 2. (Feasibility) $R(\iota, \lambda)$ is feasible for the game modification problem in (1) with probability
- 3. (**Optimality**) If in addition the cost function ℓ is L-Lipschitz, then $R(\iota, \lambda)$ is asymptotically optimal:

$$\lim_{\max\{\iota,\lambda\}\to 0} \ell\left(R\left(\iota,\lambda\right),R^{\circ}\right) = C^{\star},$$

4. (**Optimality Gap**) If ℓ is piecewise linear, then

 $\ell\left(R\left(\iota,\lambda\right),R^{\circ}\right) = C^{\star} + O(\max\left\{\iota,\lambda\right\}),$

Extended Rock-Paper-Scissors Game

• We present a special matrix game called Extended Rock-Paper-Scissors (eRPS), which has the desired (\mathbf{p}, \mathbf{q}) as the unique NE. This game can be defined for arbitrary strategy space sizes $|A_1|$ and $|A_2|$. The standard rock paper scissors game is a special case when the sizes are 3, hence the name.

$igsquare$ $\mathcal{A}_1ackslash\mathcal{A}_2$	0	1	2	3	•••	k-2	k-1	k	•••	$ \mathcal{A}_2 - 1$
0	0	$-\frac{c}{\mathbf{p}_0\mathbf{q}_1}$	$\frac{c}{\mathbf{p}_0 \mathbf{q}_2}$	0		0	0	1	•••	1
1	0	0	$-\frac{c}{\mathbf{p}_1\mathbf{q}_2}$	$\frac{c}{\mathbf{p}_1\mathbf{q}_3}$	•••	0	0	1	•••	1
2	0	0	0	$-\frac{c}{\mathbf{p}_2\mathbf{q}_3}$	•••	0	0	1	•••	1
3	0	0	0	0	•••	0	0	1	•••	1
• • •	•••	• • •	• • •	• • •	•••	• • •	• • •		•••	•••
k-2	$\frac{c}{\mathbf{p}_{k-2}\mathbf{q}_0}$	0	0	0	•••	0	$-\frac{c}{\mathbf{p}_{k-2}\mathbf{q}_{k-1}}$	1	•••	1
k-1	$-\frac{c}{\mathbf{p}_{k-1}\mathbf{q}_0}$	$\frac{c}{\mathbf{p}_{k-1}\mathbf{q}_1}$	0	0	•••	0	0	1	•••	1
k	-1	-1	-1	-1	•••	-1	-1	0	•••	0
•••		•••	•••	•••	•••	•••	• • •		•••	•••
$ \mathcal{A}_1 - 1$	-1	-1	-1	-1	•••	-1	-1	0	•••	0

Experiments

1. Given left below is the payoff matrix for the **simplified Two-finger Morra** game, which has a unique NE $(\mathbf{p}, \mathbf{q}) = (\frac{7}{12}, \frac{5}{12})$ and value $-\frac{1}{12}$. On the right, we minimally modify the game to keep the same unique NE but make the game fair with a value of 0.

Original:
$$\begin{pmatrix} 2 & -3 \\ -3 & 4 \end{pmatrix}$$
 Modified: (

2. The Rock-Paper-Scissors-Fire-Water game, given on the left below, is a generalization of the Rock-Paper-Scissor game to five actions. The unique NE is $\mathbf{p} = \mathbf{q} = (\frac{1}{9}, \frac{1}{9}, \frac{1}{9}, \frac{1}{3}, \frac{1}{3})$ and has value 0. We desire the NE to be simpler for humans, so we redesign the game to have a uniformly mixed NE $\mathbf{p} = \mathbf{q} = (\frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5}, \frac{1}{5})$. The resultant game is given below.

Original	Modifi				
(0 -1 1 -1 1)	(0 -1 1 -				
1 0 -1 -1 1	1 0 -1 -				
-1 1 0 -1 1	-1 1 0 $-$				
$1 \ 1 \ 1 \ 0 \ -1$	1 1 1 0				
$\begin{pmatrix} -1 & -1 & -1 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} -1 & -1 & -1 & 3 \end{pmatrix}$				

Summary

• We study the game modification problem, where a benevolent game designer or a malevolent adversary modifies the reward function of a zero-sum Markov game so that a target deterministic or stochastic policy profile becomes the unique Markov perfect Nash equilibrium and has a value within a target range, in a way that minimizes the modification cost. We characterize the set of policy profiles that can be installed as the unique equilibrium of a game and establish sufficient and necessary conditions for successful installation. We propose an efficient algorithm that solves a convex optimization problem with linear constraints and then performs random perturbation to obtain a modification plan with a near-optimal cost.

(3)

